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There may be other cases than those analyzed in Sections 3.1 and 3.2 where the integral of the

m.g.f. M1 given in (5) admits a closed-form expression. An alternative way of evaluating this m.g.f.

is through power series expansions. This leads to a computable saddlepoint approximation under

quite general step size distributions, with twice di↵erentiable density. This appendix provides these

series expansions and the resulting saddlepoint approximation, when the number of steps of random

walk is fixed. Explicit expansions are provided for the gamma and the Weibull distributions.

Let k 2 N\{0}, l 2 N and u > 0 and define the functions

 k,l(u) =
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where g is the density of R1 = ||X1|| w.r.t. l1, assuming existence of its l-th derivative g
(l). Then

the di↵erential equation

 
0
k,l(u) = �

 k+1,l+1(u)

u2
(43)

holds, assuming existence of g(l+1). Thus we have
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p
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p
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u
.

From this, from (43) with k = 1 and l = 0 and from @||v||/@v = z follows
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assuming existence of g0. According to (11), ū is the solution w.r.t. u of
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◆
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n
. (45)

It follows from (43) and (44) that
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which yields
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assuming existence of g00. From the replacement of the saddlepoint equation (45) into (46), one

obtains
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Proposition 4.1. Let k 2 N\{0}, l 2 N, u > 0, then the functions  k,l given by (42) admit the

power series representation

 k,l(u) =
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◆ p
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k

1X
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where

sj,k,l =
m2j+k�1,l

j!�
�p
2 + j

� (48)

and

mk,l =

Z

(0,1)
x
k
g
(l)(x)dl1(x),

assuming existence of g(l).

Proof. The series expansions (47) can be justified by replacing Ip/2�1 in (42) by the ascending

series
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2
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�
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, 8z 2 C,

see e.g. 9.6.10 at p. 375 of Abramowitz and Stegun [26], and by integrating term by term.

These developments lead to the following general result.

Corollary 4.2 (Computable general saddlepoint approximation). Assume g
00 exists and let r > 0,

then the saddlepoint ū at r, defined by (11), can be computed by
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The m.g.f. of X1 as function of u > 0 can be computed by

M̄1(u) = �
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p
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⌘ 1X
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u

2

⌘2j
. (49)

The determinant of the Hessian matrix of K1 at the saddlepoint ū can be computed by
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!
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The saddlepoint approximation to qp,n(r), the density of Rn, can be computed by (14) after replacing

�
2
p(ū) by (50) and M̄1(u) by (49). The coe�cients sj,k,l are given by (48) and their existence is

assumed.

When applying Corollary 4.2 to specific step size distributions, we merely need the coe�cients

sj,k,l defined in (48). The next results provide these coe�cients for two important generalizations

of the exponential distribution: the gamma and the Weibull distributions. They provide su�cient

flexibility to cope with many practical situations.

Proposition 4.3. Assume gamma distributed lengths, i.e. g(x) = �
↵
/�(↵)x↵�1e��x, 8↵, �,

x > 0. For convenience, denote sj,k,l(↵) = sj,k,l. Then 8j 2 N,

sj,k,0(↵) =
�(↵+ 2j + k � 1)

�2j+k�1�(↵)�
�p
2 + j

�
j!
, 8k 2 N\{0}, (51)

sj,k,1(↵) = �{sj,k,0(↵� 1)� sj,k,0(↵)}, 8k 2 N\{0, 1}, (52)

and

sj,k,2(↵) = �
2{sj,k,0(↵� 2)� 2sj,k,0(↵� 1) + sj,k,0(↵)}, 8k 2 N\{0, 1, 2}. (53)

Thus (52) and (53) can be computed from (51).

Proof. The moment of order k 2 N of the gamma distribution is mk,0 = �(↵+ k)/{�k�(↵)}. This
formula and (48) yield (51).

Redenote g = g↵, then it is easily seen that it satisfies the di↵erential equation

g
0
↵(x) = �{g↵�1(x)� g↵(x)}.

This result leads directly to (52).

Similarly, g↵ satisfies the di↵erential equation

g
00
↵(x) = �

2{g↵�2(x)� 2g↵�1(x) + g↵(x)}.

This result leads directly to (53).

Although Proposition 4.3 does hold for ↵ = 1, this case can be substantially simplified as

follows.
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Corollary 4.4. Assume exponential lengths, i.e. g(x) = �e��x, 8�, x > 0. Then 8j 2 N,

sj,1,0 =
1p
⇡

✓
2

�

◆2j �
�
1
2 + j

�

�
�p
2 + j

� , sj,2,0 =
1p
⇡

✓
2

�

◆2j+1 �
�
3
2 + j

�

�
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2 + j

� (54)

sj,k,0 =
�(2j + k)

�2j+k�1�
�p
2 + j

�
j!
, 8k 2 N\{0, 1, 2}, (55)

sj,k,1 = ��sj,k,0, and sj,k,2 = �
2
sj,k,0, 8k 2 N\{0}. (56)

Thus (56) can be computed from (54) and (55).

Proof. Both formulae in (54) are obtained from (51) simplified with the duplication formula

�(2z) = ⇡
� 1

2 22z�1�(z)�

✓
z +

1

2

◆
, (57)

see e.g. 6.1.18 at p. 256 of Abramowitz and Stegun [26], whereas (55) is simply (51).

From g
0(x) = ��g(x) and g

00(x) = �
2
g(x) one obtains (56) directly.

Note the following closed-form expressions. When p = 2, (49) with (54) yield the power series

of M̄1(u) = �/

p
�2 � u2: refer to the proof of Proposition 2.4 in Gatto [12]. When p = 3, the

following result holds.

Corollary 4.5. Assume exponential lengths, i.e. g(x) = �e��x, 8�, x > 0, and p = 3. Then,

8u 2 (��,�),
1X

j=0

sj,1,0

⇣
u

2

⌘2j
=

�p
⇡u

log
� + u

� � u
, provided u 6= 0, (58)

1X

j=0
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u

2
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= � 2p
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�
2
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and (59)

1X

j=0

sj,3,2

⇣
u

2

⌘2j
=

4p
⇡

✓
�
2

�2 � u2

◆2

. (60)

Proof. The first equation in (54) with p = 3 leads to
P1

j=0 sj,1,0 (u/2)
2j = 2⇡�1/2P1

j=0 1/(1 +

2j)(u/�)2j . Then the series (41) leads to (58).

By using (54) and (56), one obtains
P1

j=0 sj,2,1 (u/2)
2j = �1/(2⇡1/2)

P1
j=0(u/�)

2j , which gives

(59).

By using (55) and (56) we obtain
P1

j=0 sj,3,2 (u/2)
2j =

P1
j=0 �(2[j + 3/2])/{�(j + 3/2)j!}

(u/{2�})2j . By using the duplication formula (57), one simplifies this last expression to 4⇡�1/2P1
j=0

(j + 1)(u/�)2j , which gives (60).

One can see that Corollary 4.5 is coherent with the results of Section 3.2.

Proposition 4.6. Assume light-tailed Weibull distributed lengths, i.e. g(x) = ↵�x
↵�1 exp{��x↵},

8↵ > 1,� > 0 and x > 0. Then 8j 2 N,

sj,k,0 =
�
⇣
1 + 2j+k�1

↵

⌘

�
2j+k�1

↵ �
�p
2 + j

�
j!
, 8k 2 N\{0}, (61)
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sj,k,1 = (↵� 1)sj,k�1,0 � ↵� sj,k+↵�1,0, 8k 2 N\{0, 1}, (62)

and

sj,k,2 = (↵� 1)(↵� 2)sj,k�2,0 � 3(↵� 1)↵� sj,k+↵�2,0 + (↵�)2sj,k+2↵�2,0, 8k 2 N\{0, 1, 2}. (63)

Thus (62) and (63) can be computed from (61).

Proof. Formula (61) follows from the moment of order k of the Weibull distribution, which is

mk,0 = �
�k/↵� (1 + k/↵) , 8k 2 N.

By di↵erentiation one obtains

g
0(x) = {(↵� 1)x�1 � ↵�x

↵�1}g(x)

as well as

g
00(x) = {(↵� 1)(↵� 2)x�2 � 3(↵� 1)↵�x↵�2 + (↵�)2x2(↵�1)}g(x),

which lead to (62) and (63).

The exponential and Weibull distributions have the following relation: if X follows the expo-

nential distribution with parameter �, given in Proposition 4.4, then 8↵ > 0, X1/↵ follows the

Weibull distribution, given in Proposition 4.6. The Weibull distribution is defined 8↵ > 0, but its

m.g.f. exists around zero if ↵ � 1: the distribution is light-tailed when ↵ � 1. Theorem 4.6 is

indeed restricted to the light-tailed Weibull distribution.
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